rpe—

F - — TR w-r-‘-r#

name.py

Chapter 2

Changing Case in a String with Methods

One of the simplest tasks you can do with strings is change the case of the
words in a string. Look at the following code, and try to determine what’s
happening:

name = "ada lovelace"
print(name.title())

Save this file as name.py, and then run it. You should see this output:

Ada Lovelace

In this example, the variable name refers to the lowercase string "ada
lovelace". The method title() appears after the variable in the print() call.
A method is an action that Python can perform on a piece of data. The dot
(.) after name in name.title() tells Python to make the title() method act on
the variable name. Every method is followed by a set of parentheses, because
methods often need additional information to do their work. That informa-
tion is provided inside the parentheses. The title() function doesn’t need
any additional information, so its parentheses are empty.

The title() method changes each word to title case, where each word
begins with a capital letter. This is useful because you’ll often want to think
of a name as a piece of information. For example, you might want your pro-
gram to recognize the input values Ada, ADA, and ada as the same name, and
display all of them as Ada.

Several other useful methods are available for dealing with case as
well. For example, you can change a string to all uppercase or all lowercase
letters like this:

name = "Ada Lovelace"
print(name.upper())
print(name.lowex())

This will display the following:

ADA LOVELACE
ada lovelace

The lower() method is particularly useful for storing data. Many times
you won’t want to trust the capitalization that your users provide, so you’ll
convert strings to lowercase before storing them. Then when you want to
display the information, you’ll use the case that makes the most sense for
each string.

wl_~am




Using Variables in Strings

In some situations, you’ll want to use a variable’s value inside a string. For

example, you might want two variables to represent a first name and a last
name respectively, and then want to combine those values to display some-
one’s full name:

first_name = "ada"

last_name = "lovelace"

full name = f"{first name} {last_name}"
print(full_name)

To insert a variable’s value into a string, place the letter f immediately
before the opening quotation mark @. Put braces around the name or names
of any variable you want to use inside the string. Python will replace each
variable with its value when the string is displayed.

These strings are called f-strings. The fis for format, because Python
formats the string by replacing the name of any variable in braces with its
value. The output from the previous code is:

ada lovelace

You can do a lot with f-strings. For example, you can use f-strings to
compose complete messages using the information associated with a vari-
able, as shown here:

" n

first_name = "ada
last_name = "lovelace”

full name = f"{first name} {last_name}"
print(f"Hello, {full name.title()}!")

The full name is used in a sentence that greets the user @, and the
title() method changes the name to title case. This code returns a simple
but nicely formatted greeting:

Hello, Ada Lovelace!

You can also use f-strings to compose a message, and then assign the
entire message to a variable:

first name = “"ada"

last_name = "lovelace"”

full name = f"{first name} {last_name}"
message = f"Hello, {full name.title()}!"
print(message)

This code displays the message Hello, Ada Lovelace! as well, but by
assigning the message to a variable @ we make the final print() call much
simpler @.

Variables and Simple Data Types 21




22

Chapter 2

F-strings were first introduced in Python 3.6. If yow're using Python 3.5 or earlier,
youll need to use the format() method rather than this f syntax. To use format(), list
the variables you want to use in the string inside the parentheses following format.
Each variable is referred to by a set of braces; the braces will be filled by the values
listed in parentheses in the order provided:

full name = "{} {}".format(first_name, last_name)

Adding Whitespace to Strings with Tabs or Newlines

In programming, whitespace refers to any nonprinting character, such as
spaces, tabs, and end-of-line symbols. You can use whitespace to organize
your output so it’s easier for users to read.

To add a tab to your text, use the character combination \t as shown

at @:

>>> print("Python")

Python

>>> print("\tPython")
Python

To add a newline in a string, use the character combination \n:

>>> print("Languages:\nPython\nC\nJavaScript")
Languages:

Python

C

JavaScript

You can also combine tabs and newlines in a single string. The string
"\n\t" tells Python to move to a new line, and start the next line with a tab.
The following example shows how you can use a one-line string to generate
four lines of output:

>>> print("Languages:\n\tPython\n\tC\n\tJavaScript")
Languages:

Python

C

JavaScript

Newlines and tabs will be very useful in the next two chapters when you
start to produce many lines of output from just a few lines of code.

Stripping Whitespace

Extra whitespace can be confusing in your programs. To programmers
‘python' and 'python ' look pretty much the same. But to a program, they
are two different strings. Python detects the extra space in 'python ' and
considers it significant unless you tell it otherwise.




It’s important to think about whitespace, because often you’ll want to
compare two strings to determine whether they are the same. For example,
one important instance might involve checking people’s usernames when
they log in to a website. Extra whitespace can be confusing in much simpler
situations as well. Fortunately, Python makes it easy to eliminate extraneous
whitespace from data that people enter.

Python can look for extra whitespace on the right and left sides of a
string. To ensure that no whitespace exists at the right end of a string, use
the rstrip() method.

>>> favorite_language = 'python '
>>> favorite_language

"python '

>>> favorite_language.rstrip()
'python’

>>> favorite_language

'python '

The value associated with favorite_language at ® contains extra white-
space at the end of the string. When you ask Python for this value in a ter-
minal session, you can see the space at the end of the value ®. When the

rstrip() method acts on the variable favorite_language at ®, this extra space
is removed. However, it is only removed temporarily. If you ask for the value
of favorite_language again, you can see that the string looks the same as
when it was entered, including the extra whitespace @.

To remove the whitespace from the string permanently, you have to
associate the stripped value with the variable name:

>>> favorite_language = 'python
>>> favorite_language = favorite_language.rstrip()
>>> favorite_language

"python’

To remove the whitespace from the string, you strip the whitespace
from the right side of the string and then associate this new value with the
original variable, as shown at @. Changing a variable’s value is done often
in programming. This is how a variable’s value can be updated as a pro-
gram is executed or in response to user input.

You can also strip whitespace from the left side of a string using the
Istrip() method, or from both sides at once using strip():

>>> favorite_language = ' python '
>>> favorite_language.rstrip()

' python'

>>> favorite_language.lstrip()
'python '

>>> favorite_language.strip()
'python’

Variables and Simple Data Types 23




