
78 Chapter 5

5-2. More Conditional Tests: You don’t have to limit the number of tests you cre-
ate to 10. If you want to try more comparisons, write more tests and add them
to conditional_tests.py. Have at least one True and one False result for each of
the following:

•	 Tests for equality and inequality with strings

•	 Tests using the lower() method

•	 Numerical tests involving equality and inequality, greater than and less
than, greater than or equal to, and less than or equal to

•	 Tests using the and keyword and the or keyword

•	 Test whether an item is in a list

•	 Test whether an item is not in a list

if Statements
When you understand conditional tests, you can start writing if statements.
Several different kinds of if statements exist, and your choice of which to
use depends on the number of conditions you need to test. You saw several
examples of if statements in the discussion about conditional tests, but now
let’s dig deeper into the topic.

Simple if Statements
The simplest kind of if statement has one test and one action:

if conditional_test:
 do something

You can put any conditional test in the first line and just about any action
in the indented block following the test. If the conditional test evaluates to
True, Python executes the code following the if statement. If the test evaluates
to False, Python ignores the code following the if statement.

Let’s say we have a variable representing a person’s age, and we want to
know if that person is old enough to vote. The following code tests whether
the person can vote:

voting.py age = 19
if age >= 18:
 print("You are old enough to vote!")

Python checks to see whether the value of age is greater than or equal
to 18. It is, so Python executes the indented print() call:

You are old enough to vote!

if Statements 79

Indentation plays the same role in if statements as it did in for loops. All
indented lines after an if statement will be executed if the test passes, and
the entire block of indented lines will be ignored if the test does not pass.

You can have as many lines of code as you want in the block follow-
ing the if statement. Let’s add another line of output if the person is old
enough to vote, asking if the individual has registered to vote yet:

age = 19
if age >= 18:
 print("You are old enough to vote!")
 print("Have you registered to vote yet?")

The conditional test passes, and both print() calls are indented, so both
lines are printed:

You are old enough to vote!
Have you registered to vote yet?

If the value of age is less than 18, this program would produce no output.

if-else Statements
Often, you’ll want to take one action when a conditional test passes and a dif-
ferent action in all other cases. Python’s if-else syntax makes this possible. An
if-else block is similar to a simple if statement, but the else statement allows
you to define an action or set of actions that are executed when the condi-
tional test fails.

We’ll display the same message we had previously if the person is old
enough to vote, but this time we’ll add a message for anyone who is not
old enough to vote:

age = 17
1 if age >= 18:
 print("You are old enough to vote!")
 print("Have you registered to vote yet?")
2 else:
 print("Sorry, you are too young to vote.")
 print("Please register to vote as soon as you turn 18!")

If the conditional test 1 passes, the first block of indented print()
calls is executed. If the test evaluates to False, the else block 2 is executed.
Because age is less than 18 this time, the conditional test fails and the code
in the else block is executed:

Sorry, you are too young to vote.
Please register to vote as soon as you turn 18!

This code works because it has only two possible situations to evaluate:
a person is either old enough to vote or not old enough to vote. The if-else

80 Chapter 5

structure works well in situations in which you want Python to always exe-
cute one of two possible actions. In a simple if-else chain like this, one of
the two actions will always be executed.

The if-elif-else Chain
Often, you’ll need to test more than two possible situations, and to evaluate
these you can use Python’s if-elif-else syntax. Python executes only one
block in an if-elif-else chain. It runs each conditional test in order, until
one passes. When a test passes, the code following that test is executed and
Python skips the rest of the tests.

Many real-world situations involve more than two possible conditions.
For example, consider an amusement park that charges different rates for
different age groups:

•	 Admission for anyone under age 4 is free.

•	 Admission for anyone between the ages of 4 and 18 is $25.

•	 Admission for anyone age 18 or older is $40.

How can we use an if statement to determine a person’s admission rate?
The following code tests for the age group of a person and then prints an
admission price message:

amusement
_park.py

age = 12
1 if age < 4:
 print("Your admission cost is $0.")
2 elif age < 18:
 print("Your admission cost is $25.")
3 else:
 print("Your admission cost is $40.")

The if test 1 checks whether a person is under 4 years old. When the
test passes, an appropriate message is printed and Python skips the rest of
the tests. The elif line 2 is really another if test, which runs only if the
previous test failed. At this point in the chain, we know the person is at least
4 years old because the first test failed. If the person is under 18, an appro-
priate message is printed and Python skips the else block. If both the if
and elif tests fail, Python runs the code in the else block 3.

In this example the if test 1 evaluates to False, so its code block is not
executed. However, the elif test evaluates to True (12 is less than 18) so its
code is executed. The output is one sentence, informing the user of the
admission cost:

Your admission cost is $25.

Any age greater than 17 would cause the first two tests to fail. In these
situations, the else block would be executed and the admission price would
be $40.

Rather than printing the admission price within the if-elif-else block,
it would be more concise to set just the price inside the if-elif-else chain

if Statements 81

and then have a single print() call that runs after the chain has been
evaluated:

age = 12

if age < 4:
 price = 0
elif age < 18:
 price = 25
else:
 price = 40

print(f"Your admission cost is ${price}.")

The indented lines set the value of price according to the person’s age,
as in the previous example. After the price is set by the if-elif-else chain, a
separate unindented print() call uses this value to display a message report-
ing the person’s admission price.

This code produces the same output as the previous example, but the
purpose of the if-elif-else chain is narrower. Instead of determining a price
and displaying a message, it simply determines the admission price. In addi-
tion to being more efficient, this revised code is easier to modify than the
original approach. To change the text of the output message, you would
need to change only one print() call rather than three separate print() calls.

Using Multiple elif Blocks
You can use as many elif blocks in your code as you like. For example, if the
amusement park were to implement a discount for seniors, you could add
one more conditional test to the code to determine whether someone quali-
fies for the senior discount. Let’s say that anyone 65 or older pays half the
regular admission, or $20:

age = 12

if age < 4:
 price = 0
elif age < 18:
 price = 25
elif age < 65:
 price = 40
else:
 price = 20

print(f"Your admission cost is ${price}.")

Most of this code is unchanged. The second elif block now checks to
make sure a person is less than age 65 before assigning them the full admis-
sion rate of $40. Notice that the value assigned in the else block needs to
be changed to $20, because the only ages that make it to this block are for
people 65 or older.

